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Abstract
Multiple sensors are commonly fused to improve the de-

tection and recognition performance of computer vision and
pattern recognition systems. The traditional approach to
determine the optimal sensor combination is to try all pos-
sible sensor combinations by performing exhaustive experi-
ments. In this paper, we present a theoretical approach that
predicts the performance of sensor fusion that allows us to
select the optimal combination. We start with the charac-
teristics of each sensor by computing the match score and
non-match score distributions of objects to be recognized.
These distributions are modeled as a mixture of Gaussians.
Then, we use an explicit Φ transformation that maps a re-
ceiver operating characteristic (ROC) curve to a straight
line in 2-D space whose axes are related to the false alarm
rate (FAR) and the Hit rate (Hit). Finally, using this rep-
resentation, we derive a set of metrics to evaluate the sen-
sor fusion performance and find the optimal sensor combi-
nation. We verify our prediction approach on the publicly
available XM2VTS database as well as other databases.

1. Introduction

Sensors are used to collect data and computer vision and
pattern recognition techniques are used to recognize objects
in the sensed data. In order to increase the recognition
system performance, sensor fusion techniques are widely
used today. By fusing different sensors, we may achieve in-
creased accuracy, reduced false alarms and increased range
of scenarios for which a system will function correctly.

There are four levels of sensor fusion [10]: data level,
feature level, score level, and decision level. Data level fu-
sion is the combination of unprocessed sensor data. When
the sensors are alike, we can consider all the data suitable
for the data level fusion. Feature level fusion is believed
to be very promising since feature sets can provide more
information about the input biometrics than other levels.
But different feature sets are sometimes in conflict and may
not be available which make the feature level fusion more
challenging than other levels of fusion. Fusion at the score

level is widely used because match scores and non-match
scores from different sensors can be normalized and com-
bined by different score-level techniques. These techniques
include product of likelihood ratios, logistic regression, sum
of normalized scores, maximum of the normalized scores,
and weighted sum of normalized scores [9]. Decision level
fusion combines decisions made by different algorithms.
Decision fusion methods include statistical method, voting
method, fuzzy logic based method, etc.

Given the characteristics of the single sensors, how can
we find the optimal sensor combination which gives the best
recognition performance? The traditional approach is to try
all possible combinations of sensors by performing exhaus-
tive experiments to determine the optimal combination. In
this paper, we present a theoretical approach to predict the
sensor fusion performance that allows us to select the opti-
mal sensor combination. In this approach, first, we use the
characteristics of each sensor to compute the match score
and non-match score distributions which are modelled as
a mixture of Gaussians. Second, we decompose the area
under the ROC curve (AUROC) of the fusion system to
a set of AUROCs which are obtained from the combina-
tion of the components from the match score and non-match
score distributions. Third, we use an explicit Φ transforma-
tion that maps a ROC curve to a straight line in 2-D space
whose axes are related to the FAR and the Hit rate. Fi-
nally, using this representation, we derive a set of metrics to
evaluate the sensor fusion performance and find the optimal
sensor combination. By using this approach, we can de-
termine the optimal sensor combination by computing the
metrics instead of performing the exhaustive experiments.
We show results on various databases.

2. Related Work and Contributions

2.1. Related Work

Kittler et al. [4] develop a common theoretical frame-
work for fusing the decision of multiple sensors. Accord-
ing to the Bayesian theory, for different assumptions, the
problem can be expressed as the product rule or the sum
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rule which constitute the base of the sensor fusion strate-
gies. They prove that many commonly used combination
rules such as the min rule, max rule, median rule, and ma-
jority vote rule can be developed from the basic decision
rules. Their approach can be used to develop other combi-
nation strategies. Keller et al. [3] analyze the sensor fusion
by the fuzzy set theory at the decision level. They use a
d-metric which is the ratio of the probability of detection
to the probability of false alarm to predict the sensor fusion
performance. Daugman [1] discusses the sensor fusion at
the decision level. He gives the probability of a false alarm
under the disjunction rule and the probability of a false re-
ject under the conjunction rule. He concludes that it is bet-
ter to use a strong sensor alone than in combination with a
weaker one.

Poh and Bengio [7] propose a measurement F-ratio
which is related to the equal error rate (EER) to find
the optimal fusion candidate under the assumption that the
match score and non-match score are single Gaussian dis-
tributed. They verify their approach on the BANCA multi-
modal database. Wang and Bhanu [11] present a prediction
model which is based on the likelihood ratio to predict the
sensor fusion performance. They derive the Fisher mea-
surement for the sensor fusion system to predict the system
performance. In their approach, they model the match score
and non-match score as the single Gaussian distributions.
We list the above approaches and our approach proposed in
this paper in Table 1.

Table 1. Prediction approaches for sensor fusion performance.

Authors Approach Comments

Kittler et al. (1998)
[4]

Prove that the commonly used fu-
sions rules can be developed from
the sum rule and product rule by
the Bayesian theory

Decision level

Daugman (2000) [1] Provides the probability of false
alarm and false reject under the
conjunction rule and disjunction
rule based on the statistical deci-
sion theory

Decision level

Keller et al. (2001)
[3]

Derive a metric based on the
fuzzy theory.

Decision level

Poh and Bengio
(2004) [7]

Derive a F-ratio metric based on
the statistical approach

Score level, Sin-
gle Gaussian dis-
tribution assump-
tion

Wang and Bhanu
(2006) [11]

Derive the Fisher measurement
based on the likelihood ratio of
the sensors

Score level, Sin-
gle Gaussian dis-
tribution assump-
tion

This paper Derive a metric based on Φ trans-
formation and ROC curve de-
composition

Score level,
Gaussian mixture
model assump-
tion

2.2. Contributions

The specific contributions of this paper are:
1) Our prediction approach is based on the score level

fusion. We assume that the match score and the non-match
score distributions are mixture of Gaussians. Based on this

we decompose the AUROC of the fusion system to a set
of AUROCs which are obtained from the combinations of
the components from the match score distribution and the
non-match score distribution.

2) We use an explicit Φ transformation that maps a ROC
curve to a straight line in 2-D space whose axes are related
to the FAR and the Hit. We derive a set of metrics to
evaluate the sensor fusion performance and find the optimal
sensor combination.

3) We verify our prediction approach on the publicly
available XM2VTS, NIST-4, ear, face and gait (video)
databases. We compare this approach with the previous pre-
diction model presented in [11].

3. Technical Approach

The AUROC can be used as a measurement of a system
performance [5]. In order to make the prediction approach
better applicable to real data, we assume that the match
score and non-match score distributions are Gaussian mix-
ture models. We decompose the AUROC of the fusion sys-
tem to a set of AUROCs which are obtained from the com-
binations of the components from the match score distribu-
tion and the non-match score distribution. Since AUROC
is not easy to calculate, we apply a Φ transformation to map
a ROC curve to a straight line in 2-D space whose axes
are related to the FAR and the Hit rates. Based on this
line, we derive a set of metrics to evaluate the sensor fusion
performance.

3.1. Decomposition of the area under the ROC curve

Let there be two classes for a recognition system: match
and non-match. We denote f(x) as the match score distri-
bution and g(x) as the non-match score distribution. We
assume that f(x) and g(x) are Gaussian mixtures. Then,
we have f(x) =

∑m
i=1 αifi(x) and g(x) =

∑n
j=1 βjgj(x).

Where m and n are the number of components, αi, βj are
component proportions,

∑m
i=1 αi = 1 and

∑n
j=1 βj = 1.

For each component, we have fi(x) ∼ N(msi , δ
2
si

) and
gi(x) ∼ N(mni , δ

2
ni

), where msi and δsi are mean and
standard deviation for match score distribution, mnj and
δnj are mean and standard deviation for non-match score
distribution. For a criterion λ, we can obtain FAR =∑n

j=1

∫ ∞
λ

βjgj(x)dx and Hit =
∑m

i=1

∫ ∞
λ

αifi(x)dx.
We know that the AUROC can be used as a performance
measurement. Then, we have

AUROC =
∫ 1

0 (1 − FAR)dHit

=
∫ 1

0 (1 − ∑n
j=1 βjFARj)d(

∑m
i=1 αiHiti)

=
∑m

i=1

∑n
j=1 AUROCij − 1

(1)
where AUROCij =

∫ 1

0 (1 − βjFARj)d(αiHiti). For ex-
ample, if m = 3, n = 2, then the AUROC can be decom-
posed as six AUROCs whose axes are the components of
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the match score distribution and the non-match score distri-
bution. Figure 1 shows the decomposition of the area under
the ROC curve for Gaussian mixtures. We can see that the
AUROC =

∑3
i=1

∑2
j=1 AUROCij − 1. The sum of the

bold parts in Figure 1 is 1.
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Figure 1. Decomposition of the area under the ROC curve for the
Gaussian mixture model.

3.2. Fusion prediction

Now, we consider the components of the match score and
non-match score distributions. We know that

βjFAj = βjΦ(ZNj) (2)

αiHiti = αiΦ(ZSi) (3)

where Φ is a standard normal distribution, ZNj =
λ−mnj

δnj
,

and ZSi = λ−msi

δsi
.

Since Φ is a monotonically increasing function, the rela-
tionship between βjFAj and αiHiti can be represented by
βjZNj and αiZSi. From equation (2) and equation (3), we
can see that if we increase the value of ZNj then βjFARj

will be decreased. If we decrease the value of ZSi, then
αiHiti will be increased. For a fixed βjFARj , the value
of αiHiti is higher, then AUROC is greater. Thus, the
AUROC can be evaluated by βjZNj − αiZSi. We can get
the linear relationship between βjZNj and αiZSi as

αi · ZSi =
αi

βj
· δnj

δsi

(βj · ZNj) + αi · mnj − msi

δsi

(4)

Figure 2 shows the transformation of the ROC curve to a
straight 2-D linear.

ijAUROC

jj FARβ

ii Hitα
sij

njislope
δβ

δα
=

si

sinj
i

mm

δ
α

−
⋅

Sii Zα

Njj Zβ

Figure 2. Transformation of the ROC curve to a straight 2-D line.

We know that when the FAR is equal to the false reject

rate (FRR), the criterion λ∗ =
δsi

mnj+δnj
msi

δsi
+δnj

. Then, we

have

βjZNj − αiZSi = (αi + βj)
msi − mnj

δsi + δnj

(5)

Thus, according to equation (1), the AUROC can be eval-
uated by

d =
m∑

i=1

n∑

j=1

(αi + βj)
msi − mnj

δsi + δnj

(6)

We use equation (6) to evaluate the sensor fusion system
performance instead of performing the exhaustive experi-
ments to determine the optimal sensor combination.

4. Experimental Results

4.1. Databases

We evaluate our prediction approach on the extended
multi modal verification for teleservices and security ap-
plications (XM2VTS) database, NIST Special Database
4 (NIST-4) for fingerprint, ear database, face/gait video
database.

The publicly available multi-modal database XM2VTS
contains face and speech data from 295 subjects which are
divided into a set of 200 clients, 25 evaluation impostors,
and 70 test imposters [6]. There are eight baseline systems
which include 5 face baseline systems and 3 speech baseline
systems. These face baseline systems and speech baseline
systems have different features and classifiers. We denote
these face baseline systems as b1, · · · , b5 and these speech
baseline systems as b6, b7, b8.

NIST-4 database consists of 2000 pairs of fingerprints.
Each of the fingerprints has two different impressions. The
images are collected by scanning inked fingerprints from
paper. The resolution of the fingerprint image is 500 DPI
and the size of the image is 480 × 512 pixels. We denote
the fingerprint database as e1.

The data in the ear database are captured by Minolta
Vivid 300 camera. The camera outputs 3D range images
which contain 200×200 grid points. There are 155 subjects
which include 17 females, six subjects have earrings, and
12 subjects have their ears partially occluded by hair (with
less than 10% occlusion). A total of six images per subject
are recorded. Totally 902 shots are used for the experiments
since some shots are not properly recorded. Every person
has at least 4 shots. There are three different poses in the
collected data: frontal, left and right. We denote the ear
database as e2.

Video data are obtained by a Sony DCR-VX1000 digi-
tal video camera recorder operating at 30 frames per sec-
ond. There are 45 subjects who are walking in the outdoor
condition and expose a side view to the camera. Each sub-
ject has two video sequences. The number of sequences per
person varies from 2 to 3. The resolution of each frame is
720×480. The video data include gait data and frontal face
data. We denote the gait database as e3 and frontal face
database as e4.
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4.2. Fusion performance evaluation

From the N baseline systems, we randomly pick q sen-
sors, then all the possible sensor combinations would be
com = N +

∑q
i=1 CN

i which includes the single sensor
possibilities.

Suppose we have N baseline systems. Before we fuse
the baseline systems, we need to normalize the match scores
and the non-match scores to insure that none of the baseline
system will be dominant for the fusion combinations. We
denote the match score of the baseline system as msi and
the non-match score as nsi, where i = 1, 2, . . . , N . We
use three normalization methods in our experiments: Min-
Max, Z-score, and Tanh. We fuse the baseline systems by
the sum rule and the max rule. We denote msfusion,j and
nsfusion,j as a set of normalized match scores and non-
match scores after fusion, where j = 1, 2, . . . , com. Then,
based on msfusion,j and nsfusion,j , we can find the point
where the FAR is equal to the FRR. The values of FAR
and FRR at this point is called the equal error rate (EER)
[2]. We know that the FAR is the probability that the non-
match score is above criteria λ, where

FAR = P (nsfusion,j > λ) =
# of non-match score above λ

total # of non-match scores
(7)

The FRR is the probability that the match score is below
criteria λ, where

FRR = P (msfusion,j < λ) =
# of match score below λ

total # of match scores
(8)

FAR and FRR are functions of criteria λ. By the empirical
approach, we can find

λ∗ = argmini|FA(λ) − FR(λ)| (9)

We use the half total error rate (HTER) to evaluate the
system performance, where

HTER =
FA(λ∗) + FR(λ∗)

2
(10)

We repeat this process for com times. According the the
HTER for each combination, we can find the optimal sen-
sor fusion combination which has the minimum HTER.

4.3. Prediction for the XM2VTS database

We use the expectation-maximization (EM) algorithm to
estimate the match score and non-match score distributions.
Figure 3 shows these distributions for the eight baseline sys-
tems in the XM2VTS database. The component numbers
for the eight match score distributions are 1, 1, 1, 1, 5, 4, 1,
2 and for the eight non-match score distributions are 1, 13,
18, 1, 15, 17, 18, and 18.

We use the Min-Max, Z-score, and Tanh normalization
methods to normalize these eight baseline systems. Then,
we randomly combine two or three baseline systems and
get 8+C8

2 +C8
3 = 92 combinations. For each combination,
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Figure 3. Match score and non-match score distributions for the
baseline systems in the XM2VTS database.

we fuse the baseline systems by the sum rule and the max
rule.

• Fusion performance evaluation: We use equation (7)
and (8) to obtain the FAR and FRR for the fusion sys-
tem. Then, we find the cross-point λ∗ by using equation
(9). Finally, we apply equation (10) to get the HTER for
the fusion systems. We repeat the above process for all the
92 possible combinations and rank the HTER to find the
optimal combination which has the minimum HTER.

• Fusion performance prediction: For each combina-
tion, we use the EM algorithm to estimate the match score
and the non-match score distributions to get the component
numbers, mean, variance, and weight for each component.
Then, we apply equation (6) to obtain the d measurement
which is used to predict the fusion system performance. We
repeat the above process for all the 92 possible combina-
tions and rank the value of d measurement to find the op-
timal combination which has the maximum d. We list the
top 5 optimal baseline system combinations which got from
the evaluation and prediction in Table 2. We observe that
most of the top 5 optimal combinations from the evaluation
can be found in the top 5 optimal combinations from the
prediction.

We use the Fowlkes and Mallows index (FM) as the crite-
ria [8] to measure the degree of the agreement between the
fusion performance evaluation and prediction. The value of
this criteria is between 0 and 1. The larger the value the
greater is the agreement between them. Figure 4 shows the
FM values for top 5 combinations for Min-Max, Z-score,
and Tanh normalization methods and the sum and max fu-
sion rules. We can see that the FM values are all greater
than 0.92.
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Table 2. Top 5 optimal sensor combinations for the XM2VTS
database: evaluation vs. prediction.

(a) Min-Max
Rank Evaluation Prediction

Sum Max Sum Max
1 (b2,b6) (b1,b4) (b2,b3,b7) (b1,b4)
2 (b2,b3,b6) (b1,b4,b5) (b2,b3,b6) (b1,b4,b5)
3 (b2,b3,b7) (b1,b5) (b2,b6) (b1,b3,b4)
4 (b2,b7) (b1,b5,b6) (b2,b7) (b1,b4,b6)
5 (b2,b6,b8) (b1,b3,b5) (b2,b3,b8) (b1,b5)

(b) Z-score
Rank Evaluation Prediction

Sum Max Sum Max
1 (b2,b6) (b1,b4,b5) (b2,b3,b7) (b1,b4)
2 (b1,b4) (b1,b4) (b3,b7) (b1,b4,b6)
3 (b1,b4,b5) (b1,b5) (b2,b6) (b1,b2,b4)
4 (b3,b7) (b1,b3,b5) (b1,b4,b5) (b1,b4,b5)
5 (b2,b3,b7) (b1,b2,b5) (b1,b4) (b1,b3,b4)

(c) Tanh
Rank Evaluation Prediction

Sum Max Sum Max
1 (b2,b6) (b1,b4,b5) (b2,b3,b7) (b1,b4)
2 (b1,b4) (b1,b4) (b3,b7) (b1,b4,b6)
3 (b1,b4,b5) (b1,b5) (b2,b6) (b1,b2,b4)
4 (b3,b7) (b1,b3,b5) (b1,b4,b5) (b1,b4,b5)
5 (b2,b3,b7) (b1,b2,b5) (b1,b4) (b1,b3,b4)
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Figure 4. Fowlkes and Mallows index for top 5 sensor fusion com-
binations in the XM2VTS database.

4.4. Prediction for the NIST-4 database, ear
database, and video database

We use the fingerprint, ear, gait, and frontal face as our
four baseline systems. Note that the number of subjects in
these systems are different, we repeat the data of biometrics
to make sure that these four baseline systems have the same
number of subjects. Figure 5 shows the match score and
non-match score distributions which are estimated by the
EM algorithm. The component numbers for the four match
score distributions are 12, 11, 9, 9 and for the four non-
match score distributions are 1, 17, 1, and 1.

As the fusion system evaluation and prediction in the
XM2VTS database, we apply the Min-Max, Z-score, and
Tanh normalization methods to normalize these four base-
line systems. We randomly combine two or three baseline
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Figure 5. Similarity score distributions for the fingerprint, ear, gait,
and frontal face: (a) Match score distributions. (b) Non-match
score distributions.
systems and get 4 + C4

2 + C4
3 = 14 combinations. For each

combination, we fuse the baseline systems by the sum rule
and the max rule. We use the same process as we men-
tioned in Section 4.3 to evaluate and predict the fingerprint,
ear, gait, and frontal face fusion performance. We list the
top 5 optimal baseline system combinations which are nor-
malized by the Min-Max, Z-score, and Tanh methods and
fused by the sum rule and max rule in Table 3.

We observe that most of the top 5 optimal combinations
from the evaluation can be found in the top 5 optimal com-
binations from the prediction. Figure 6 shows the FM val-
ues for top 5 optimal combinations for Min-Max, Z-score,
and Tanh normalization methods and the sum and max fu-
sion rules. The curve is not smooth because we do not have
enough data.
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Figure 6. Fowlkes and Mallows index for top 5 sensor fusion com-
binations on the fingerprint, ear, and video databases.

4.5. Comparison with other prediction method

We apply the prediction model which is presented in [11]
on the XM2VTS database. We use the Min-Max normal-
ization method to normalize the baseline systems. We fuse
these systems by the sum rule and the max rule. Then, we
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Table 3. Top 5 optimal sensor combinations for for the NIST-4
database, ear database, and video database: evaluation vs. predic-
tion.

(a) Min-Max
Rank Evaluation Prediction

Sum Max Sum Max
1 (e1,e2) (e2,e3,e4) (e1,e2) (e2,e3)
2 (e1,e2,e4) (e2,e3) (e1,e2,e3) (e1,e2,e3)
3 (e1,e2,e3) (e1,e2,e3) (e1,e2,e4) (e2,e3,e4)
4 (e2,e3) (e1,e2,e4) (e2,e3) (e1,e2,e4)
5 (e2,e4) (e2,e4) (e2,e3,e4) (e1,e2)

(b) Z-score
Rank Evaluation Prediction

Sum Max Sum Max
1 (e1,e2,e3) (e1,e2,e3) (e1,e2,e3) (e2,e3)
2 (e1,e2) (e1,e2) (e1,e2) (e1,e2,e3)
3 (e2,e3) (e2,e3) (e2,e3) (e1,e2)
4 (e1,e2,e4) (e1,e2,e4) (e1,e2,e4) (e1,e2,e4)
5 (e2,e3,e4) (e2,e4) (e2,e4) (e2,e4)

(c) Tanh
Rank Evaluation Prediction

Sum Max Sum Max
1 (e1,e2,e3) (e1,e2,e3) (e1,e2,e3) (e2,e3)
2 (e1,e2) (e1,e2) (e1,e2) (e1,e2,e3)
3 (e2,e3) (e2,e3) (e2,e3) (e1,e2)
4 (e1,e2,e4) (e1,e2,e4) (e1,e2,e4) (e1,e2,e4)
5 (e2,e3,e4) (e2,e4) (e2,e4) (e2,e4)

evaluate and predict the fusion system performance by the
approach presented in [11]. In this model, the prediction is
independent of the fusion rules. We list the fusion system
evaluation result and the prediction result in Table 4. We
compute the FM values and compare them with the predic-
tion approach presented in this paper. Figure 7 shows the
FM values obtained by the prediction approach in [11] and
this paper by the Min-Max normalization method. From
Figure 7, we can see that our approach presented in this pa-
per has higher FM values than the approach presented in
[11]. That means the approach presented in this paper is
more effective.

Table 4. Top 5 optimal combinations for sensor fusion system:
evaluation vs. prediction.

Rank Evaluation Prediction
Sum Max

1 (b1,b4,b6) (b1,b4) (b1,b3,b4)
2 (b1,b4,b7) (b1,b4,b5) (b1,b4,b5)
3 (b1,b6) (b1,b3,b4) (b1,b2,b4)
4 (b1,b4,b8) (b1,b4,b6) (b1,b4)
5 (b1,b4) (b1,b5) (b1,b4,b6)

5. Conclusions

In this paper, we present a theoretical prediction ap-
proach that predicts the performance of sensor fusion that
allows us to select the optimal combination. We ver-
ify our prediction approach on the multi-modal XM2VTS
database, NIST-4 fingerprint database, ear database and
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Figure 7. Fowlkes and Mallows index for top 5 optimal sensor
combinations by our previous approach [11] and the approach pre-
sented in this paper on the XM2VTS database.

video databases. We use Fowlkes and Mallows index to
evaluate the degree of the agreement between the fusion
performance evaluation and prediction. The experimental
results show that our prediction approach can predict the
sensor fusion performance effectively. The technical ap-
proach presented here is applicable not only to sensor fu-
sion but also to various other fusion problems in computer
vision and pattern recognition.
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